- Az időbeli mennyiségek kiszámításának kényelme. Az amerikaiak egyszerűbbnek találták a 60 Hz-es frekvenciát az egy perchez (60 másodperc) kötni, ami leegyszerűsítette a váltakozó áram időbeli paramétereinek kiszámítását. Ez N. Tesla munkásságának hatása volt. Van olyan vélemény, hogy ő javasolta a 60 Hz-es frekvenciát, mivel az harmonikusan illeszkedett a megszokott időmérő rendszerbe.
- Műszaki előnyök. A magasabb frekvencia használata lehetővé teszi valamivel kisebb méretű transzformátorok alkalmazását. A transzformátorok méretének csökkentése érdekében a repülőgépekben általában 400 Hz-et használnak.
- Gazdasági megfontolások. A 60 Hz-es frekvencia elfogadását az a törekvés is motiválhatta, hogy az amerikai elektromos készülékek gyártói megtarthassák a piacot, és ne engedjék be az európai elektromos eszközöket.
Az amerikaiaknak rengeteg saját szabványuk és megközelítésük van az építkezés terén, amelyek jelentősen eltérnek az európaiaktól. Vegyük például a konzervativizmust a családi házak építésében. Szinte az összes vidéki építkezésük könnyűszerkezetes. Még a pórusbeton sem tudott gyökeret verni náluk, bár voltak próbálkozások.
Nagyon eltérő az energetikájuk is, a saját feszültség- és frekvenciaszabványaikkal. A hálózati feszültség frekvenciája 60 Hz, míg nálunk 50 Hz. És több feszültségszabványuk is van: 120, 208, 240, 277 és 480 Volt. A 480 V-os hálózatban nem a nullvezetőt, hanem a fázisvezetőt földelik. Miért van ez így, és van-e ebben értelem? Nézzük meg közelebbről.

Először is nézzük meg, miért választották az elektromos hálózatokhoz a 60 Hz-es szabványt? A következő információk hallhatók:
És mi a helyzet a feszültséggel? Mi indokolja a 120, 208, 240, 277 és 480 Volt választását a hálózataikban?

A leléptető transzformátortól induló vezeték háromvezetékes, 120/240 Voltos hálózat. Így minden amerikai házba három vezeték érkezik: egy nulla és két fázis. A 120 Volt feszültség az egyik fázis és a nulla vezeték között a kis teljesítményű elektromos eszközök számára van fenntartva, míg a két fázis között 240 Volt a feszültség, ami a nagyobb teljesítményű készülékek, például villanytűzhelyek, légkondicionálók, fűtési rendszerek stb. működtetéséhez szükséges.
Az elektromos hálózatok története az Egyesült Államokban az egyenárammal kezdődött. Ezt a technológiát Thomas Edison vezette be. Három vezetéket használtak: nullát, pozitívat és negatívat. A 100 V-os feszültséget kísérleti úton határozták meg. Ez a feszültség optimális volt a szénszálas izzólámpák működtetéséhez.
De a feszültséget 110 V-ra emelték – Edison 10%-ot hozzáadott a hálózati veszteségek kompenzálására.
Európában 1883 után áttértek a fémszálas (szénszál helyett) izzólámpákra, amelyekhez körülbelül 220 V feszültség kellett.
Az 1960-as évek elejéig a Szovjetunióban is a 100-127 Voltos feszültségszabványt használták. Azonban a lakossági elektromos készülékek számának növekedésével az energiahálózatok túlterheltté váltak. A probléma megoldása: vagy növelni kell a vezetékek keresztmetszetét, vagy 220 Voltra kell emelni a feszültséget az elektromos hálózatokban. A második megoldást választották, áttérve az európai feszültségszabványra.
Később az Egyesült Államokban rájöttek, hogy Nikola Tesla váltakozó áramú rendszere kényelmesebb. Ez transzformálható és kisebb veszteséggel továbbítható. Így jelentek meg a modern rendszerek, köztük a szétválasztott nullpontú rendszer is. De a feszültségszabványt 120 V-ra emelték (a nulla és a fázisvezető között).
Nem az Egyesült Államok az egyetlen ország, ahol 120 V a hálózati feszültség.

De az Egyesült Államokban más szabványok is vannak.
208 Volt
A rendszerükben a fogyasztóhoz két fázis (a három lehetségesből) és a nullvezeték érkezik. A fázisok közötti eltolódás azonban nem 180, hanem 120 fok. Ezért a fázisok közötti feszültség 208 V (120 x √3 = 207,85 Volt).

240 Volt
A nagyobb teljesítményű elektromos készülékek, például a háztartási gépek, fűtőberendezések, bojlerek, ruhaszárítók, légkondicionálók és elektromos autók töltőállomásai két fázisvezetőhöz csatlakoznak. A terhelés teljesítménye ugyanaz, de az áram a felére csökken. Ennek eredményeként kisebb keresztmetszetű vezetők is használhatók, mintha a berendezés 120 V-os hálózatról működne.
Az Egyesült Államokban gyakran láthatsz 240 V-ot szolgáltató transzformátorokat az oszlopokon a házak közelében. Minél közelebb van a transzformátor, annál kisebbek a veszteségek.

277 és 480 Volt

A legnagyobb teljesítményű fogyasztók számára az Egyesült Államokban 480 V-os háromfázisú feszültséget használnak. Például olyan berendezésekhez, mint a targoncák és elektromos autók töltői, valamint az ipari gépek. Ez lehetővé teszi kisebb keresztmetszetű vezetékek használatát, és az áram egyenletesen eloszlik az egyes fázisokban.
Egy ilyen hálózatban a fázis és a nulla közötti feszültség 277 V váltakozó áram (480 V osztva a 3 négyzetgyökével). Ezt a feszültséget az Egyesült Államokban nagy elektromos rendszerek (fűtés, szellőzés és légkondicionálás) táplálására használják. A 277 V 120 V helyett történő alkalmazása a lámpatestek által felvett áram 50%-nál nagyobb mértékű csökkentését eredményezi. Ez lehetővé teszi kisebb keresztmetszetű vezetékek használatát, ami csökkenti a súlyukat és ezáltal az elektromos vezetékek költségét is.
A 277 V-os feszültségszabvány a 2000-es évek elejétől kezdett elterjedni az Egyesült Államokban a LED-es világítás megjelenésével.
Az Egyesült Államokban a 480 V-os elektromos hálózat egyik fázisát földelik a nulla földelése helyett. Ez a megoldás a tűzvédelem javítását és a vezetékek szigetelésének öngyulladásának valószínűségének csökkentését célozza a hálózat túlterhelése esetén. Nézd meg a kapcsolási rajzot.

Ha a 120 V-os hálózatukban a nulla van földelve, akkor a 480 V-os hálózatban nincs nulla. A biztonság érdekében rövidzárlat esetén feltétlenül szükség van földelésre. Fogják és földelik az egyik fázist. A rendszer neve: Corner Grounded Delta System (a háromszög egyik sarkának földelése).

A fázisvezető egyben védővezető is. Egyrészt ennek a rendszernek nem szabadna működnie, de mégis működik, és széles körben alkalmazzák az Egyesült Államokban. De ha egy másik fázisvezető elszakad, az áram a földön keresztül a kapcsolószekrény vagy a készülék házára folyik. A ház és a földdel való csatlakozás felmelegszik.
Ezt a földelt fázisvezetővel rendelkező rendszert a vasúti DPD rendszerben és nálunk is használják (a síneken lévő feszültség).
Mi értelme van ennek a sok feszültségszabványnak? Az amerikaiak próbálnak spórolni. Minél magasabb a feszültség, annál vékonyabbak a vezetékek, annál kisebb a költségük. Másrészt viszont ez zavart okoz az egyszerű fogyasztóknál. Bár az egyszerű polgároknak ott engedély nélkül tilos önállóan szerelniük és javítaniuk a vezetékeket. Ellentétben a mi „barkácsolásunkkal”. Nálunk nagyobb a szabadság még a házépítés terén is, mint az Egyesült Államokban. Ott, hogy engedélyt kapj az önálló építkezésre, az évekbe is beletelhet.
És még egy érdekes tény az amerikai vezetékekről.
A helyi Nemzeti Elektromos Szabályzat (NEC) előírásai szerint a szabványos földelő vezeték mindig további szigetelés nélkül készül.

Ezt az áramvezető eret Protective Earth (PE)-nek vagy földelő vezetéknek nevezik. Ezeknek a kábeleknek nem kell égésgátló védőcsövet használniuk, mivel a szerkezetükben már van egy speciális védőréteg. Ez a réteg kartonból készül, amelyet égésgátló anyagokkal impregnálnak.
Ez a megközelítés lehetővé teszi, hogy a védőberendezések gyorsabban működjenek a fázis sérülése vagy a kábel sérülése esetén, mivel a védőkapcsolók vagy a FI-relék kisebb késleltetéssel reagálnak a vezetők közötti rövidzárlatra, ami a földelő vezeték szigetelésének kiégésével függ össze.
Ez megbízhatóbb védelmet nyújt az elektromos rendszer számára, és minimalizálja a vezetékek túlmelegedésével vagy sérülésével kapcsolatos kockázatokat, ami végső soron növeli az elektromos energia használatának biztonságát.
A BEJEGYZÉS A HIRDETÉS ALATTI GOMBBAL FOLYTATÓDIK